联系我们

仪器销售部
电  话:010-62969867
传  真:010-82782201
手  机:15510478722 
服务专线:400 6601118     
Email:
shidaijiance@163.com
网址:www.beijingshidai.com.cn
 

       

文章详情

超声检测技术对缺陷定性评定的主要方法

日期:2020-09-22 14:35
浏览次数:1288
摘要:

超声检测技术对缺陷定性评定的主要方法

.波形判断法(经验法)

目前应用最广泛的是A扫描显示型超声脉冲反射式检测仪。经过长期的超声检测实践,许多超声检测人员对其大量接触的材料、产品及制造工艺有充分的了解,并通过大量的解剖分析验证,积累了丰富的经验,在检测时能通过A扫描显示型超声脉冲反射式探伤仪,根据示波屏上出现缺陷回波时的波形形状,例如视频显示或射频显示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形状,回波占宽以及移动探头时缺陷回波的变化情况(波幅、位置、数量、形状、动态包络等),还可以根据观察多次底波的次数,底波高度损失情况,再根据缺陷在被检件中的位置,分布情况,缺陷的当量大小(与反射率有关),延伸情况,结合具体产品、材料的特点和制造工艺作出综合判断,评估出缺陷的种类和性质。有时还可以通过改变发射超声波脉冲的频率、改变声束直径大小(采取聚焦或采用不同直径的探头等)来观察缺陷的回波变化特征,从而识别是材料中的冶金缺陷还是组织反射。

在这方面已经有不少经验总结和资料报道,例如判断钢锻件中的白点、夹杂物、残余缩孔、粗晶、中心疏松、方框形偏析,以及焊缝中的气孔、夹渣、未焊透、未熔合、裂纹等等。

必须指出,这种判断方法在很大程度上依赖超声检测人员的经验、技术水平和对特定产品、材料及制造工艺的充分了解,其局限性是很大的,难以推广成为通用的评定方法。此外,作为A扫描显示的缺陷回波所显示的缺陷信息也极其有限,主要显示的是波幅大小、位置和回波包络形状,而缺陷对超声响应的相位、频谱等重要信息则无法显示出来,但是后两者与缺陷性质和种类有着密切关系,这也正是目前广大超声检测人员致力研究探索的问题。

下面举出一部分常见缺陷的回波特征:

1)钢锻件中的粗晶与疏松--多以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。

2)棒材的中心裂纹--在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有高低变化并有不同程度的游动,在沿轴向扫查时,反射波幅度和位置变化不大并显示有一定的延伸长度。

3)锻件中的裂纹--由于裂纹型缺陷内含物多有气体存在,与基体材料声阻抗差异较大,超声反射率高,缺陷有一定延伸长度,起波速度快,回波前沿陡峭,波峰尖锐,回波后沿斜率很大,当探头越过裂纹延伸方向移动时,起波迅速,消失也迅速。

4)钢锻件中的白点--波峰尖锐清晰,常为多头状,反射强烈,起波速度快,回波前沿陡峭,回波后沿斜率很大,在移动探头时回波位置变化迅速,此起彼伏,多处于被检件例如钢棒材的中心到1/2半径范围内,或者钢锻件厚度最大的截面的1/4~3/4中层位置,有成批出现的特点(与炉批号和热加工批有关)。当白点数量多、面积大或密集分布时,还会导致底波高度显著降低甚*消失。

5)锻件中的非金属夹杂物--多为单个反射信号,起波较慢,回波前沿不太陡峭,波峰较圆钝,回波后沿斜率不太大并且回波占宽较大。

6)钛合金锻件中的高密度夹杂物(例如钨、钼)--多为单个反射信号,回波占宽不太大,但较裂纹类要大些,回波前沿较陡峭,后沿斜率较大,当改变探测频率和声束直径时,其反射当量大小变化不大(如为大晶粒或其他组织反射在这种情况下回波高度将有显著变化)。

7)铸件或焊缝中的气孔--起波快但波幅较低,有点状缺陷的特征。

8)焊缝中的未焊透--多为根部未焊透(如V型坡口单面焊时钝边未熔合)或中间未焊透(如X型坡口双面焊时钝边未熔合),一般延伸状况较直,回波规则单一,反射强,从焊缝两侧探伤都容易发现。

9)铸件或焊缝中的夹渣--反射波较紊乱,位置无规律,移动探头时回波有变化,但波形变化相对较迟缓,反射率较低,起波速度较慢且后沿斜率不太大,回波占宽较大。

一般在可能的情况下,为了进一步确认缺陷性质,还应采用其他无损检测手段,例如X射线照相(检查内部缺陷)、磁粉和渗透检验(检查表面缺陷)来辅助判断。

.根据回波相位识别反射体

根据声压反射率公式:rp=(Z2cosα-Z1cosβ)/(Z2cosα+Z1cosβ)
式中:Z1-**介质(被检材料)的声阻抗;Z2-**介质(缺陷)的声阻抗;α-入射角;β-反射角
当超声波垂直入射时,cosα=cosβ=1,当入射波与反射波同为一种波型时,α=β,上述公式简化为:rp=(Z2-Z1)/(Z2+Z1)
即超声波在被检材料中投射到缺陷上时,在界面的声反射大小取决于两者声阻抗差值,并在Z2Z1的情况下,回波相位与入射波反相,从而可以利用回波与入射波的相位关系识别例如裂纹或其他反射体。
如图1(上)所示,使用平底孔(含空气)调整起始灵敏度时,显示的射频回波相位与金属材料中的入射波相位相反,而对于裂纹、非金属夹杂物等缺陷,情况相似,即缺陷回波与平底孔回波相位相同(图1中)。如果是高密度夹杂物(例如钨、钼等)缺陷时,则缺陷回波与平底孔回波相位相反,即ZZ时,回波与入射波同相,与平底孔回波反相;ZZ时,回波与入射波反相,与平底孔回波同相。(Z为缺陷声阻抗,Z为基体材料声阻抗)。
另一种利用回波射频显示正向与负向最大振幅关系识别焊缝中裂纹类危险缺陷的方法如图2所示。
应当说明的是,上述两种方法都需要能在示波屏上以较大程度(比例)展宽脉冲信号的超声探伤仪,并应能作射频显示,但目前常用的一般便携式超声探伤仪在这方面的应用还受到一定限制。


1 根据回波相位识别反射体

 

 

2 射频显示波形正负振幅关系法
A-
缺陷回波负向最大振幅;B-缺陷回波正向最大振幅
A/B
1--裂纹类缺陷;A/B1--其他反射体

 

.根据视频显示波形的形状判别缺陷性质

这是在经验法的基础上,通过定量测定缺陷回波的前沿上升时间(t1),脉冲持续时间(t2)和脉冲下降时间(t3),从而对缺陷性质进行判别的方法,见图3所示。
首先应对示波屏水平基线刻度以0.1μs1μs分划,可以使用厚度2.5英寸(63.6mm)的纯铝平面试块(CL=6.35mm/μs),使**、二次底波前沿分别对准总长100mm的水平线刻度上的50100mm,此时水平基线刻度每1mm代表声波传播时间为0.4μs(往返时间),使缺陷回波高度为100%满刻度,读取90%满刻度线和20%满刻度线与回波包络线交点所对应的t1t2t3三个时间(见图3)。
对于裂纹类缺陷(类似镜面反射),其t1小,t2较非平面缺陷的t2要小;
对于疏松、夹杂类缺陷,由于缺陷周围不规则界面的弥散特征,使t3较长,并且t1t2也较裂纹类缺陷的大。


3脉冲波形形状测定法

 

这种方法与经验法判断含气体的裂纹类缺陷回波的前沿陡峭、回波占宽较小、回波后沿斜率较大的特点是相应的,但是用这种方法可以更定量地判断,不过其具体定量值尚需做大量的实验验证工作后确定。

.缺陷回波的频谱分析

缺陷回波的频谱包络形状与缺陷几何形状及取向,以及缺陷尺寸与超声波长的比值密切相关,因此可以通过向缺陷发射宽频带(窄脉冲)超声波并对接收到的回波信号频谱进行分析从而判断缺陷种类和性质。在这方面已有不少资料报道,但主要还是以识别反射体的几何形状为基础,例如识别是平面缺陷还是体积缺陷,是倾斜取向还是垂直取向的缺陷,利用不同形状与取向缺陷的反射与频率的依从关系,能较好地确定缺陷的种类和性质。

我们知道,在探伤仪上显示的是缺陷的合成传输函数:F=F1·F2·F32·F42·F5·F62

式中:F1-发生器传输函数;F2-放大器传输函数;F3-探头传输函数;F4-被检件传输函数;F5-缺陷传输函数;F6-耦合传输函数。其中F3F4F6对超声信号有两次(往返)影响,故取其平方值。

在一般情况下,缺陷传输函数F5又是下述缺陷各参数的函数ψF5=ψ{K·Nb·Sb·Qb·Rb}

式中:K-缺陷坐标(位置);Nb-缺陷性质;Sb-缺陷面积;Qb-缺陷取向;Rb-缺陷内含物(填充物)

在用普通单频超声法向工件发射超声脉冲和接收反射超声脉冲时,缺陷内含物的脉冲频率保持不变,因此电路和声路部分所有传输函数都不带有缺陷信息,成了窄频滤波器,并由于它们彼此的振幅频率特性有显著不同,而使包含在F5中的大部分缺陷信息消失在其他传输函数中。

利用频谱法可以比普通单频法大大增加有关缺陷性质和大小的信息量。对于KQbSb,容易用普通方法确定,困难的是确定NbRb。可以把缺陷反射脉冲的频谱设为R(x),发射脉冲频谱为E(t),而缺陷传输函数设为h(t),则:

R(x)=E(t)·h(t)

当已知与给定方向有关的函数R(x)后,虽然还不能确定缺陷的全部特征,但已能对缺陷的一般形状,特别是对缺陷的取向提供有用的资料。因此,可以利用宽频带(窄脉冲)探头,并使发射频谱尽可能规则,则缺陷回波频谱将随缺陷的形状和取向而变化,从而有助于判断出缺陷的种类和性质。

超声检测技术对缺陷定性评定的其他方法

1.超声C扫描和B扫描

这是将直通回波以线型方式显示缺陷的平面投影形状(C扫描)或缺陷在深度截面上反射面的平直、弯曲,即反射界面的形状(B扫描),从而帮助判断缺陷的种类和性质。

2.超声全息

借助全息原理,将缺陷反射的大量信息数据处理成三维空间立体图像显示以辅助判断。

3.利用电子计算机处理缺陷回波信号

目前国内外均在研究并试制出电脑化超声波探伤仪。但是常用的是与频谱分析结合使用或作为超声探测程序控制来使用,不过相信很快将有突破性发展。

 

 

京公网安备 11010802025993号